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Abstract

This paper aims to study a one-pursuer, one evader pursuit differential game for a higher level
of infinite system that is an infinite system of first order ternary differential equations, and prove
completion of pursuit in the game. Both integral constraints and geometric constraints are sub-
jected on the players’ control functions, thus two separate cases of pursuit games are examined.
In the game, the pursuer wants to take the state of the system into the origin of l2 space at some
finite time interval, whereas evader avoids this fromhappening. For every case, we solve the con-
trol problem by establishing the admissible control function. In order to achieve the pursuer’s
objective, we then construct an admissible strategy for the pursuer and develop an equation for
the guaranteed pursuit time of the game.
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1 Introduction

The study of game theory benefited mankind in addressing problems between two parties of
opposing interests. The solution to the problem entails the establishment of a feasible winning
strategy for the party seeking to achieve its objective. This includes scenarios in many prominent
fields such as developing an optimal control in a prey-predator model consisting of an infected
prey population [35]; constructing chasing strategies for competitive control between two life in-
surance companies [9]; presenting an optimised pricing model for competing hotels based on
energy-saving and environmental protection [25]; proposing an optimal solution for social plan-
ners in economicswith a discrete control model and a uniquemeta-heuristic approach [10]; exam-
ining concerning trends in fisheries at East China Seamodelled as a congestedmarine environment
[27]; analysing various capture situations and control-based techniques for unmanned aerial ve-
hicles [11]; illustrating solution for a dynamic bi-criteria bioresource management problem [29];
and many more.

The introduction of theory of differential games by Rufus Isaacs [17] is an extension to the ex-
isting game theory, where the dynamics of the involved parties are governed by some differential
equations. Given the significant amount of work that has been invested into solving differen-
tial games, numerous researchers have addressed two common constraints, that are geometric
constraints and integral constraints, which are subjected on the players’ control functions using
a variety of methodologies. The following works can be examined for examples of differential
games with (i) geometric constraints: pursuit-evasion games where one evader plays against one
pursuer [31] and many pursuers [1]; a pursuit game of chasing a single faster evader [8]; a pur-
suit game in a nonempty closed convex set [18]; a pursuit-evasion game of finding an optimal
strategy for the evader [22]; and two separate linear discrete pursuit games [28], and (ii) integral
constraints: a pursuit game of determining some guaranteed pursuit time [4]; a game problem
associated with a non-linear control system [12]; an optimal pursuit game set in a plane [20]; an
encounter-evasion game problem [26]; and a group pursuit differential game [30].

Real life problems are often complicated and presented as a system of partial differential equa-
tions (PDEs). Thus, many initial investigations were dedicated to examine control problems and
differential gameproblemswith players’motions described bypartial differential equations. Some
of them are the study of a control system with PDEs of parabolic type [5]; the determination of
values for such pursuit-evasion games [6]; the development of solution for game’s system of fully
nonlinear first-order PDEs [7]; and the verification of a unique solution by considering the notion
of a generalised solution [24].

Due to the complexity of partial differential equations, the method of decomposition is used
to reduce the system into an infinite system of ordinary differential equations. The decomposi-
tion method allows the differential games which were originally in the form of partial differential
equations, such as a pursuit game of parabolic PDEs ([2, 23]); a pursuit game with respect to
evolutionary PDEs [3]; the pursuit and evasion games under a system of PDEs with an elliptic
operator [33]; a pursuit-evasion game based on a first-order evolution PDEs [34]; a control prob-
lem with the presence of another state [36]; and a pursuit game set in the entire space [38]; to
be solved in the framework of an infinite system of ordinary differential equations. The article
of Satimov and Tukhtasinov [32] is one of the publications that investigated a differential game
problem with linear partial differential equations given by

zt = Az − u+ v, Az =

n∑
i,j=1

∂

∂xi
(aij(x)zxj ), (1)
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on time interval [0, T ]. By applying the Fourier series in the decomposition method, the system
that comprises of z = z(x, t) is decomposed to the following ordinary differential equations:

żi(t) = λizi(t)− ui(t) + vi(t), zi(0) = zi0, (2)

for i = 1, 2, ..., where zi, ui, vi ∈ R and λi are negative eigenvalues of operater A that is as
i → ∞, λi → −∞. Pursuit and evasion games were then solved based on the reduced system.
Every combination of geometric and integral constraints are imposed on the players’ control func-
tions. They pointed out sets of initial positions that are required in proving the completion of
pursuit game and evasion is possible in evasion game separately.

Since then, numerous publications have devoted to study the differential game of pursuit or
evasion described by an infinite system of ordinary differential equations in a structure indepen-
dent froma systemof partial differential equations. It should be emphasised that each gamemodel
of an infinite system is distinct from the other, meaning that solution to a game problem based on
that system must be designed in a way that fits in with the system. The work of Ja’afaru and
Ibragimov [19] studied a one pursuer-one evader pursuit game governed by a system of ordinary
differential equations

żk(t) + λk(t)zk(t) = −uk(t) + vk(t), zk(0) = zk0, (3)

where λk(t) is a positive, continuous and bounded function on the time interval [0, T ] for k =
1, 2, .... Geometric and integral constraints are considered in the game, leading to four cases of
pursuit and evasion problems. The authors figured out the sufficient conditions, which also con-
sist of set of initial positions, for every case. The establishment of admissible strategies for the
players were also done.

The paper of Ibragimov et al. [15] investigated a pursuit game in the form of

żk = −λkzk + uk − vk, zk(0) = zk0, k = 1, 2, ..., (4)

where zk, uk, vk are real numbers, with respect to geometric constraints. The coefficient λk, k =
1, 2, ..., are positive real numbers. The evader’s maximum speed is lesser than that of pursuer. To
prove the completion of pursuit, a pursuer’s strategy was constructed, and a guaranteed pursuit
time was obtained. The researcher also build an admissible evader’s strategy in a separate game,
and guaranteed evasion time was found.

The article of Waziri et al. [39] examined a differential game of infinite one-system of simple
motion by considering both geometric and integral constraints on the control functions of the
players. The game occurs in a plane, and when the states of the pursuer and the evader coincide,
the pursuit is considered to be completed. An admissible strategy of the pursuer was constructed.
The proof was also supported with a numerical example.

The decomposition method produces a deeper understanding for the dynamic of the system,
as a more complex system of partial differential equations results in reduction to a higher level
of an infinite system of ordinary differential equations. Therefore, the differential game theorists
later recognised a differential game could also occur in a 2-systems of differential equations. The
work of Ibragimov [13] studied an optimal pursuit problem defined by the following 2-system of
differential equations:

ẋi = −αixi − βiyi + ui1 − vi1, xi(0) = xi0,

ẏi = βkxi − αiyi + ui2 − vi2, yi(0) = yi0, i = 1, 2, ...,
(5)

where αi ≥ 0, βi ∈ R, as the equation of the game. Integral constraints is chosen to restrict the
resources of the players. The solution for a time-optimal control problem was initially found.
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Then, sufficient conditions were met for the termination of pursuit game and optimal strategies of
the players, in attaining optimal pursuit time θ > 0, were constructed.

Ibragimov et al. [14] examined a pursuit gamewith system (5), butwith geometric constraints.
They presented an equation that defines the guaranteed pursuit time of the game and determined
the sufficient conditions in completing the pursuit. For the purpose of completing the pursuit, an
admissible strategy for the pursuer was developed. The paper Tukhtasinov et al. [37] extended
the work of [14] where the researchers established the estimated guaranteed pursuit time of the
game, together with guaranteed evasion time for the evasion game.

The work of Ibragimov et al. [16] solved an optimal pursuit differential game in an infinite
2-system of differential equations different from system (5). The players’ optimal strategies that
satisfy integral constraints were build and optimal pursuit time was obtained.

In this present paper, we have extended the study of pursuit game to a higher level of system
by designing a game model of an infinite system of first order ternary differential equations. The
game is set in Hilbert space l2 that is

l2 = {ζ = (ζ1, ζ2, ...) :

∞∑
k=1

|ζk|2 < ∞},

with inner product and norm given by

< ζ, η >=

∞∑
k=1

ζkηk < ∞, ||ζ|| =
√
< ζ, ζ > =

√√√√ ∞∑
k=1

ζ2k < ∞,

respectively. The proposed model is structured as ternary differential equations, describing the
motion of a point in the infinite-dimensional space l2. Unlike previous works that are limited to
two-systems of differential equationsmodels, thismodel is a three-systems framework. An infinite
system of higher level offers a more information of the dynamics of the moving point.

We impose both integral constraints and geometric constraints on the players’ control functions
separately. In every case, we first solve the control problem of the system. We then develop an
admissible strategy of the pursuer to complete the pursuit. Sufficient conditions are presented as
well.

2 Preliminaries

We utilize the following game model:

ẋk = −αkxk − uk1 + vk1, xk(0) = x0
k,

ẏk = −βkyk − γkzk − uk2 + vk2, yk(0) = y0k,

żk = γkyk − βkzk − uk3 + vk3, zk(0) = z0k,

(6)

where αk, βk ≥ 0, γk ∈ R and ukj , vkj ∈ R for k = 1, 2, ..., and j = 1, 2, 3 with x0 = (x0
1, x

0
2, x

0
3, ...),

y0 = (y01 , y
0
2 , y

0
3 , ...), z

0 = (z01 , z
0
2 , z

0
3 , ...) ∈ l2. The control parameter

u = (u1, u2, ...) = (u11, u12, u13, u21, u22, u23, ...) ∈ l2,
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of pursuer and control parameter

v = (v1, v2, ...) = (v11, v12, v13, v21, v22, v23, ...) ∈ l2,

of evader control the motion of the state of the game.

We denote that

µ(t) = (µ1(t), µ2(t), ...) = (x1(t), y1(t), z1(t), x2(t), y2(t), z2(t), ...),

∥µ(t)∥ =

√√√√ ∞∑
k=1

(
x2
k(t) + y2k(t) + z2k(t)

)
,

µk(t) = (xk(t), yk(t), zk(t)), |µk(t)| =
√

xk
2(t) + yk2(t) + zk2(t),

µ0 = (µ0
1, µ

0
2, ...) = (x0

1, y
0
1 , z

0
1 , x

0
2, y

0
2 , z

0
2 , ...),

∥µ0∥ =

√√√√ ∞∑
k=1

(
(x0

k)
2 + (y0k)

2 + (z0k)
2

)
,

µ0
k = (x0

k, y
0
k, z

0
k), |µ0

k| =
√
(x0

k)
2 + (y0k)

2 + (z0k)
2.

(7)

The ideas of establishment of strategies for pursuit differential game, described by the formu-
lated model, in the present paper can be applied in various other domains such as military tactics,
missile defense systems, cybersecurity, submarine movement, drone operations and so on.

The work of Madhavan et al. [21] demonstrated that if λk ≥ 0, λk = min{αk, βk} and w(·) ∈
S(ρ0), then the following ternary differential equations:

ẋk = −αkxk + wk1, xk(0) = x0
k,

ẏk = −βkyk − γkzk + wk2, yk(0) = y0k,

żk = γkyk − βkzk + wk3, zk(0) = z0k,

(8)

has a solution µ(·) = (µ1(·), µ2(·), ...) of the form

µk(t) = φk(t)µ
0
k +

∫ t

0

φk(t− s)wk(s)ds, k = 1, 2, ..., (9)

where

φk(t) =

e−αkt 0 0
0 e−βkt cos γkt −e−βkt sin γkt
0 e−βkt sin γkt e−βkt cos γkt

 , (10)

for each k, which is unique and belongs to the space of continuous function in l2 space on time
interval [0, θ].

The function φk(t), k = 1, 2, ..., satisfies the fact that

i. φ−1
k (t) = φk(−t),

ii. φk(t− s) = φk(t)φk(−s) = φk(−s)φk(t),

iii. |φk(t)µk| ≤ e−λkt|µk|where λk = min{αk, βk}.
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Definition 2.1. A function w(·) = (w1(·), w2(·), ...) ∈ l2, w : [0, θ] → l2 which has measurable com-
ponents wk = (wk1, wk2, wk3), k = 1, 2, ..., and is called admissible control if it obeys either integral
constraints √√√√ ∞∑

k=1

∫ θ

0

3∑
j=1

|wkj(t)|2dt ≤ ρ0, (11)

or geometric constraints √√√√ ∞∑
k=1

3∑
j=1

|wkj(t)|2 ≤ ρ0, t ∈ [0, θ], (12)

respectively where ρ0 > 0. The set of all admissible controls based on integral constraints and geometric
constraints is denoted by S(ρ0) and S1(ρ0) respectively.

Definition 2.2. The control function u(·) = (u1(·), u2(·), ...) of pursuer and the control function v(·) =
(v1(·), v2(·), ...) of evader are admissible if they obey integral constraints

∞∑
k=1

∫ θ

0

3∑
j=1

|ukj(t)|2dt ≤ ρ2,

∞∑
k=1

∫ θ

0

3∑
j=1

|vkj(t)|2dt ≤ σ2, (13)

or geometric constraints
∞∑
k=1

3∑
j=1

|ukj(t)|2 ≤ ρ2, t ∈ [0, θ],

∞∑
k=1

3∑
j=1

|vkj(t)|2 ≤ σ2, t ∈ [0, θ], (14)

where ρ, σ > 0 and ρ > σ. Set of admissible controls of pursuer (of evader) based on integral constraints
and geometric constraints is denoted by S(ρ) (S(σ)) and S1(ρ) (S1(σ)) respectively.

Definition 2.3. The function U(·, v) = (U1(t, v), U2(t, v), ...), U : [0, θ] × l2 → l2 which has the form
Uk(t, vk(t)) = vk(t)−wk(t), k = 1, 2, ..., where vk, wk are measurable, is called admissible strategy of the
pursuer if it obeys either√√√√ ∞∑

k=1

∫ θ

0

|Uk(t, vk(t))|2dt ≤ ρ, w(·) ∈ S(ρ− σ), v(·) ∈ S(σ), (15)

or √√√√ ∞∑
k=1

|Uk(t, vk(t))|2 ≤ ρ, w(·) ∈ S1(ρ− σ), v(·) ∈ S1(σ). (16)

Definition 2.4. The time θ > 0 is referred as guaranteed pursuit time in game (6) if there exists a strategy
of pursuer U such that for any admissible control of evader, µ(τ) = 0 at some time τ , τ ∈ [0, θ].

The problem of this work is to find

1. sufficient conditions to solve control problem related to the system (8),

2. sufficient conditions to solve pursuit differential game (6),

with respect to integral constraints and geometric constraints separately.
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3 Main Results

In pursuit differential games, the corresponding control problem is studied beforehand so that
the constructed control can act as a reference for developing the appropriate strategy for the pur-
suer to successfully complete the pursuit.

3.1 Control problem

In this subsection, we are up to examine the control problem for system described by differ-
ential equations (8). We want to determine an admissible control function w(t) that can steer the
state of system (8) into space’s origin for some time on time interval [0, θ].

Consider the following matrix

Ak(t) =

∫ t

0

φk(−s)φ∗
k(−s)ds =


∫ t

0
e2αksds 0 0

0
∫ t

0
e2βksds 0

0 0
∫ t

0
e2βksds

 , k = 1, 2, ..., (17)

and thus, clearly

A−1
k (t) =


(∫ t

0
e2αksds

)−1

0 0

0
( ∫ t

0
e2βksds

)−1

0

0 0
( ∫ t

0
e2βksds

)−1

 , (18)

where ∗ refers the transpose of the matrix.

We denote

Bk(t) =

e2αkt 0 0
0 e2βkt 0
0 0 e2βkt

 . (19)

We consider the following equations

∞∑
k=1

(µ0
k)

∗A−1
k (t)µ0

k = ρ20, (20)

∞∑
k=1

(µ0
k)

∗Bk(t)A
−2
k (t)µ0

k = ρ20, (21)

where ρ0 > 0.

We first implement integral constraints (13) on the players’ control functions.

Theorem 3.1. If (20) has a root t = θ1, then there exists an admissible control function w(·) ∈ S(ρ0) that
can steer the state of the system (8) to the origin at the time θ1.
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Proof. We define the control

wk(t) =

{
−φ∗

k(−t)A−1
k (θ1)µ

0
k, 0 ≤ t ≤ θ1,

0, t > θ1.
(22)

Prove the admissibility of (22),

∞∑
k=1

∫ θ1

0

|wk(s)|2ds =
∞∑
k=1

∫ θ1

0

∣∣−φ∗
k(−s)A−1

k (θ1)µ
0
k

∣∣2 ds = ∞∑
k=1

∫ θ1

0

∣∣φ∗
k(−s)A−1

k (θ1)µ
0
k

∣∣2 ds.
Observe that

φ∗
k(−s)A−1

k (θ1)µ
0
k =


x0
ke

αks
( ∫ θ1

0
e2αktdt

)−1

y0ke
βks cos γks

( ∫ θ1
0

e2βktdt
)−1

− z0ke
βks sin γks

( ∫ θ1
0

e2βktdt
)−1

y0ke
βks sin γks

( ∫ θ1
0

e2βktdt
)−1

+ z0ke
βks cos γks

( ∫ θ1
0

e2βktdt
)−1

 .

By definition of θ1, we now obtain

∞∑
k=1

∫ θ1

0

|wk(s)|2ds

=

∞∑
k=1

∫ θ1

0

(
(x0

k)
2e2αks

(∫ θ1

0

e2αktdt

)−2

+ (y0k)
2e2βks

(∫ θ1

0

e2βktdt

)−2

+ (z0k)
2e2βks

(∫ θ1

0

e2βktdt

)−2)
ds

=

∞∑
k=1

(
(x0

k)
2

(∫ θ1

0

e2αktdt

)−1

+ (y0k)
2

(∫ θ1

0

e2βktdt

)−1

+ (z0k)
2

(∫ θ1

0

e2βktdt

)−1)

=

∞∑
k=1

(µ0
k)

∗A−1
k (θ1)µ

0
k = ρ20.

This indicates that (22) satisfies integral constraints (13).

Now, we show that µ(θ1) = 0. Substituting constructed control (22) into (9), we have that

µk(θ1) = φk(θ1)

(
µ0
k +

∫ θ1

0

φk(−s)
(
− φ∗

k(−s)φ−1
k (θ1)µ

0
k

)
ds

)

= φk(θ1)

(
µ0
k −

∫ θ1

0

φk(−s)φ∗
k(−s)dsA−1

k (θ1)µ
0
k

)
,

by (17),

µk(θ1) = φk(θ1)
(
µ0
k −Ak(θ1)A

−1
k (θ1)µ

0
k

)
= φk(θ1)(µ

0
k − µ0

k) = 0.

Hence, the state of system (6) is steered into origin at finite time θ1. This proves the theorem.
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Next, let us consider the case where the control functions of the players satisfy geometric con-
straints (14).

Theorem 3.2. If (21) has a root t = θ2, then there exists an admissible control function w(·) ∈ S1(ρ0)
that can steer the state of the system (8) to the origin at the time θ2.

Proof. We build the control

wk(t) =

{
−φ∗

k(−t)A−1
k (θ2)µ

0
k, 0 ≤ t ≤ θ2,

0, t > θ2.
(23)

Despite having a similar form, the distinction of control functions (22) and (23) becomes evident
in the proof of their admissibility, as every constructed control function must adhere to its respec-
tive conditions (20) and (21).

Here, we show that (23) satisfies geometric constraints. We have

∞∑
k=1

|wk(t)|2 =

∞∑
k=1

(
(x0

k)
2e2αkt

(∫ θ2

0

e2αksds

)−2

+ (y0k)
2e2βkt

(∫ θ2

0

e2βksds
)−2

+ (z0k)
2e2βkt

(∫ θ2

0

e2βksds

)−2)
.

Since t ≤ θ2,

∞∑
k=1

|wk(t)|2 ≤
∞∑
k=1

(x0
k)

2e2αkθ2
(∫ θ2

0

e2αksds
)−2

+ (y0k)
2e2βkθ2

(∫ θ2

0

e2βksds

)−2

+ (z0k)
2e2βkθ2

(∫ θ2

0

e2βksds

)−2

=

∞∑
k=1

(µ0
k)

∗Bk(θ2)A
−2
k (θ2)µ

0
k = ρ20.

Thus, control w(·) (23) belongs to S1(ρ0).

We use (23) to prove that µ(θ2) = 0 as follows;

µk(θ2) = φk(θ2)

(
µ0
k +

∫ θ2

0

φk(−s)
(
− φ∗

k(−s)A−1
k (θ2)µ

0
k

)
ds

)

= φk(θ2)

(
µ0
k −

∫ θ2

0

φk(−s)φ∗
k(−s)dsA−1

k (θ2)µ
0
k

)
= φk(θ2)

(
µ0
k −Ak(θ2)A

−1
k (θ2)µ

0
k

)
= φk(θ2)(µ

0
k − µ0

k) = 0.

Therefore, (23) is able to bring the system’s state into origin of l2 at finite time θ2. This completes
the proof.
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3.2 Differential game of pursuit

Now, we examine pursuit differential game defined by (6), which describes the motion of a
point in space l2 which is controlled by the control functions u(·) and v(·). In this subsection, our
target is to achieve pursuer’s objective that is to complete the pursuit by constructing strategy for
the pursuer to drag the point into the origin at some time, for any admissible control of the evader.
The game of pursuit is considered based on integral and geometric constraints in separate cases.

For every k = 1, 2, ..., the solution µk(t), k = 1, 2, ..., is expressed as

µk(t) = φk(t)µ
0
k +

∫ t

0

φk(t− s)(−Uk(s, vk(s)) + vk(s))ds. (24)

Here, we consider, for every k,

∞∑
k=1

(µ0
k)

∗A−1
k (t)µ0

k = (ρ− σ)2, (25)

∞∑
k=1

(µ0
k)

∗Bk(t)A
−2
k (t)µ0

k = (ρ− σ)2, (26)

where ρ > σ.

In the first case, we solve pursuit problem with integral constraints constraining the players’
control functions.

Theorem 3.3. If ρ > σ and (25) has a root t = θ3, then the game of pursuit (6) with (13) is completed at
the time θ3.

Proof. We provide the pursuer with strategy given by

Uk(t, vk(t)) =

{
φ∗
k(−t)A−1

k (θ3)µ
0
k + vk(t), 0 ≤ t ≤ θ3,

0, t > θ3.
(27)

We guarantee the admissibility of (27)where v(·) ∈ S(σ). UsingMinowskii’s inequality, we obtain
that √√√√ ∞∑

k=1

∫ θ3

0

|Uk(s, vk(s))|2ds ≤

√√√√ ∞∑
k=1

∫ θ3

0

∣∣φ∗
k(−s)A−1

k (θ3)µ0
k

∣∣2 ds+
√√√√ ∞∑

k=1

∫ θ3

0

|vk(s)|2ds

≤

√√√√ ∞∑
k=1

∫ θ3

0

∣∣φ∗
k(−s)A−1

k (θ3)µ0
k

∣∣2 ds+ σ.
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We then get that√√√√ ∞∑
k=1

∫ θ3

0

|Uk(s, vk(s))|2ds

=

√√√√ ∞∑
k=1

(
(x0

k)
2
(∫ θ3

0

e2αktdt
)−1

+ (y0k)
2
(∫ θ3

0

e2βktdt
)−1

+ (z0k)
2
(∫ θ3

0

e2βktdt
)−1

)
+ σ

=

√√√√ ∞∑
k=1

(µ0
k)

∗A−1
k (θ3)µ0

k + σ

=
√
(ρ− σ)2 + σ = ρ− σ + σ = ρ.

This proves that (23) satisfies integral constraints.

We show that the pursuer can use strategy (27) to complete the pursuit. By substituting into
(24), we have that

µk(θ3) =φk(θ3)

(
µ0
k +

∫ θ3

0

φk(−s)
(
− φ∗

k(−s)A−1
k (θ3)µ

0
k − vk(s)

)
ds+

∫ θ3

0

φk(−s)vk(s)ds

)
=φk(θ3)

(
µ0
k −

∫ θ3

0

φk(−s)φ∗
k(−s)dsA−1

k (θ3)µ
0
k −

∫ θ3

0

φk(−s)vk(s)ds

+

∫ θ3

0

φk(−s)vk(s)ds

)
=φk(θ3)

(
µ0
k −Ak(θ3)A

−1
k (θ3)µ

0
k

)
=φk(θ3)(µ

0
k − µ0

k) = 0.

Hence, the pursuit can be completed at time θ3. This finishes the proof.

Meanwhile, in the second case, we impose geometric constraints on players’ control functions.

Theorem 3.4. If ρ > σ and (26) has a root t = θ4, then the game of pursuit (6) with (14) is completed at
finite time θ4.

Proof. We present the following strategy to the pursuer

Uk(t, vk(t)) =

{
φ∗
k(−t)A−1

k (θ4)µ
0
k + vk(t), 0 ≤ t ≤ θ4,

0, t > θ4.
(28)

To show that (28) is admissible, we employ Minowskii’s inequality and the fact that v(·) ∈ S1(σ)√√√√ ∞∑
k=1

|Uk(t, vk(t))|2 ≤

√√√√ ∞∑
k=1

∣∣φ∗
k(−t)A−1

k (θ4)µ0
k

∣∣2 +
√√√√ ∞∑

k=1

|vk(t)|2

≤

√√√√ ∞∑
k=1

∣∣φ∗
k(−t)A−1

k (θ4)µ0
k

∣∣2 + σ2.
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We then find that√√√√ ∞∑
k=1

|Uk(t, vk(t))|2

=

√√√√ ∞∑
k=1

(
(x0

k)
2e2αkt

(∫ θ4

0

e2αksds
)−2

+ (y0
k)

2e2βkt
(∫ θ4

0

e2βksds
)−2

+ (z0k)
2e2βkt

(∫ θ4

0

e2βksds
)−1

)
+ σ

≤

√√√√ ∞∑
k=1

(
(x0

k)
2e2αkθ4

(∫ θ4

0

e2αksds
)−2

+ (y0
k)

2e2βkθ4

(∫ θ4

0

e2βksds
)−2

+ (z0k)
2e2βkθ4

(∫ θ4

0

e2βksds
)−1

)
+ σ

=

√√√√ ∞∑
k=1

(µ0
k)

∗Bk(θ4)A
−2
k (θ4)µ0

k + σ =
√

(ρ− σ)2 + σ = ρ.

Show that pursuit game is terminated at time θ4. Using admissible strategy (28), we get

µk(θ4) = φk(θ4)

(
µ0
k +

∫ θ4

0

φk(−s)
(
− φ∗

k(−s)A−1
k (θ4)µ

0
k − vk(s)

)
ds+

∫ θ4

0

φk(−s)vk(s)ds

)
= φk(θ4)

(
µ0
k −Ak(θ4)A

−1
k (θ4)µ

0
k

)
= φk(θ4)(µ

0
k − µ0

k) = 0.

This completes the proof of the theorem.

We now provide an example to illustrate our results.

Example 3.1. We consider a pursuit game defined by ternary differential equations (6) where the control
functions of pursuer and evader satisfy (13). Let

x0
k = y0k = z0k =

1

k
, αk = βk =

1

2
, ρ = 2, σ = 1, (29)

for k = 1, 2, ... . Then, (25) takes the form
∞∑
k=1

3

k2

(∫ t

0

esds

)−1

= (2− 1)2,

which is equivalent to
3

et − 1

∞∑
k=1

1

k2
= 1.

Since
∑∞

k=1
1
k2 = π2

6 , therefore we obtain

3

(
π2

6

)
= et − 1,

et =
π2

2
+ 1.

Clearly,

t = ln

(
π2

2
+ 1

)
.

Hence, θ3 = ln
(

π2

2 + 1
)
, and by Theorem 3.3, the pursuit in the game for initial values (29) is completed

at the time θ3.
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4 Conclusions

In this paper, we have investigated two cases of pursuit differential games of an infinite system
of first order ternary differential equations, by considering both integral and geometric constraints.
For every case, we have determined sufficient conditions that enables the state of the system steers
into origin, and solved control problem related to the system. Moreover, we have established ad-
missible strategy for the pursuer in both cases and shown the pursuit is completed at a guaranteed
pursuit time.

Future research could explore evasion differential games described by the formulated model
(6). To add some challenges, one could consider imposing mixed constraints on the control func-
tions of the players to solve the differential game problem based on system (6).
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